Equivalence of quantum and classical coherence in electronic energy transfer.
نویسندگان
چکیده
To investigate the effect of quantum coherence on electronic energy transfer, which is the subject of current interest in photosynthesis, we solve the problem of transport for the simplest model of an aggregate of monomers interacting through dipole-dipole forces using both quantum and classical dynamics. We conclude that for realistic coupling strengths quantum and classical coherent transport are identical. This is demonstrated by numerical calculations for a linear chain and for the photosynthetic Fenna-Matthews-Olson complex.
منابع مشابه
On the interpretation of quantum coherent beats observed in two-dimensional electronic spectra of photosynthetic light harvesting complexes.
The observation of long-lived electronic quantum coherence in a photosynthetic light harvesting system [Engel et al. Nature 2007, 446, 782] has led to much effort being devoted to elucidation of the quantum mechanisms of the photosynthetic excitation energy transfer. In this paper we examine the question of whether the decay of the coherent beating signal is due to quantum mechanical decoherenc...
متن کاملQuantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer.
Recent experiments suggest that electronic energy transfer in photosynthetic pigment-protein complexes involves long-lived quantum coherence among electronic excitations of pigments. [Engel et al., Nature, 2007, 446, 782-786.] The observation has led to the suggestion that quantum coherence might play a significant role in achieving the remarkable efficiency of photosynthetic light harvesting. ...
متن کاملThermal effect and role of entanglement and coherence on excitation transfer in a spin chain
We analyze the role of bath temperature, coherence and entanglement on excitation transfer in a spin chain induced by the environment. In Markovian regime, we show that coherence and entanglement are very sensitive to bath temperature and vanish in time in contrary to the case of having zero-temperature bath. That is while, finding the last qubit of the chain in excited state increases by incre...
متن کاملQuantum energy flow in atomic ions moving in magnetic fields
Using a combination of semiclassical and recently developed wave packet propagation techniques we find the quantum self-ionization process of highly excited ions moving in magnetic fields which has its origin in the energy transfer from the center of mass to the electronic motion. It obeys a time scale orders of magnitude larger than the corresponding classical process. Importantly a quantum co...
متن کاملQuantum Coherence Accelerating Photosynthetic Energy Transfer
We show how long-lasting coherence enhances energy transfer rate in a photosynthetic complex based on an analysis of data collected using a newly developed twocolor electronic coherence photon echo technique and theoretical simulations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 83 5 Pt 1 شماره
صفحات -
تاریخ انتشار 2011